Cute Onion Club - Onion Head

Connect with Us

Rabu, 04 April 2012

Tara Kimia Listrik


Sel Elektrolisis adalah sel yang menggunakan arus listrik untuk menghasilkan reaksi redoks yang diinginkan dan digunakan secara luas di dalam masyarakat kita. Baterai aki yang dapat diisi ulang merupakan salah satu contoh aplikasi sel elektrolisis dalam kehidupan sehari-hari. Baterai aki yang sedang diisi kembali (recharge) mengubah energi listrik yang diberikan menjadi produk berupa bahan kimia yang diinginkan. Air, H2O, dapat diuraikan dengan menggunakan listrik dalam sel elektrolisis. Proses ini akan mengurai air menjadi unsur-unsur pembentuknya. Reaksi yang terjadi adalah sebagai berikut :     2 H2O(l) ——>  2 H2(g)+ O2(g)

Rangkaian sel elektrolisis hampir menyerupai sel volta. Yang membedakan sel elektrolisis dari sel volta adalah, pada sel elektrolisis, komponen voltmeterdiganti dengan sumber arus (umumnya baterai). Larutan atau lelehan yang ingin dielektrolisis, ditempatkan dalam suatu wadah. Selanjutnya, elektroda dicelupkan ke dalam larutan maupun lelehan elektrolit yang ingin dielektrolisis. Elektroda yang digunakan umumnya merupakan elektroda inert, seperti Grafit (C), Platina (Pt), dan Emas (Au). Elektroda berperan sebagai tempat berlangsungnya reaksi. Reaksi reduksiberlangsung di katoda, sedangkan reaksi oksidasi berlangsung di anoda. Kutub negatif sumber arus mengarah pada katoda (sebab memerlukan elektron) dan kutub positif sumber arus tentunya mengarah pada anoda. Akibatnya,katoda bermuatan negatif dan menarik kation-kation yang akan tereduksi menjadi endapan logam. Sebaliknya, anoda bermuatan positif dan menarik anion-anion yang akan teroksidasi menjadi gas. Terlihat jelas bahwa tujuan elektrolisis adalah untuk mendapatkan endapan logam di katoda dan gas di anoda.

Ada dua tipe elektrolisis, yaitu elektrolisis lelehan (leburan) dan elektrolisis larutan. Pada proses elektrolisis lelehan, kation pasti tereduksi di katoda dan anion pasti teroksidasi di anoda. Sebagai contoh, berikut ini adalah reaksi elektrolisis lelehan garam NaCl (yang dikenal dengan istilah sel Downs) :

Katoda (-)            :   2 Na+(l) + 2 e- ——>  2 Na(s) ……………….. (1)

Anoda (+)            :   2 Cl-(l) Cl2(g) +  2 e- ……………….. (2)

Reaksi sel            :   2 Na+(l) +  2 Cl-(l) ——>  2 Na(s) +  Cl2(g) ……………….. [(1) + (2)]

Reaksi elektrolisis lelehan garam NaCl menghasilkan endapan logam natrium di katoda dan gelembung gas Cldi anoda. Bagaimana halnya jika lelehan garam NaCldiganti dengan larutan garam NaCl? Apakah proses yang terjadi masih sama? Untuk mempelajari reaksi elektrolisis larutan garam NaCl, kita mengingat kembali Deret Volta (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta).

Pada katoda, terjadi persaingan antara air dengan ion Na+. Berdasarkan Tabel Potensial Standar Reduksi, air memiliki E°red yang lebih besar dibandingkan ion Na+. Ini berarti, air lebih mudah tereduksi dibandingkan ion Na+. Oleh sebab itu, spesi yang bereaksi di katoda adalah air. Sementara, berdasarkan Tabel Potensial Standar Reduksi, nilai E°red ion Cl- dan air hampir sama. Oleh karena oksidasi air memerlukan potensial tambahan (overvoltage), maka oksidasi ion Cllebih mudah dibandingkan oksidasi air. Oleh sebab itu, spesi yang bereaksi di anoda adalah ion Cl-. Dengan demikian, reaksi yang terjadi pada elektrolisis larutan garam NaCladalah sebagai berikut :

Katoda (-)            :   2 H2O(l) +  2 e- ——>  H2(g) +  2 OH-(aq) ……………….. (1)

Anoda (+)            :   2 Cl-(aq) ——>  Cl2(g) +  2 e- ……………….. (2)

Reaksi sel            :   2 H2O(l) +  2 Cl-(aq) ——>  H2(g) +  Cl2(g) +  2 OH-(aq)……………………. [(1) + (2)]

Reaksi elektrolisis larutan garam NaCl menghasilkan gelembung gas Hdan ion OH‑ (basa) di katoda serta gelembung gas Cldi anoda. Terbentuknya ion OHpada katoda dapat dibuktikan dengan perubahan warna larutan dari bening menjadi merah muda setelah diberi sejumlah indikator fenolftalein (pp). Dengan demikian, terlihat bahwa produk elektrolisis lelehan umumnya berbeda dengan produk elektrolisis larutan.

Selanjutnya kita mencoba mempelajari elektrolisis larutan Na2SO4. Pada katoda, terjadi persaingan antara air dan ion Na+. Berdasarakan nilai E°red, maka air yang akan tereduksi di katoda. Di lain sisi, terjadi persaingan antara ion SO42- dengan air di anoda. Oleh karena bilangan oksidasi S pada SO4-2 telah mencapai keadaan maksimumnya, yaitu +6, maka spesi SO42- tidak dapat mengalami oksidasi. Akibatnya, spesi air yang akan teroksidasi di anoda. Reaksi yang terjadi adalah sebagai berikut :

Katoda (-)            :   4 H2O(l) +  4 e- ——>  2 H2(g) +  4 OH-(aq) ……………….. (1)

Anoda (+)            :   2 H2O(l) ——>   O2(g) +  4 H+(aq) +  4 e- ……………….. (2)

Reaksi sel            :   6 H2O(l) ——>  2 H2(g) +  O2(g) +  4 H+(aq) +  4 OH-(aq)…………………….. [(1) + (2)]

6 H2O(l) ——>  2 H2(g) +  O2(g) +  4 H2O(l) …………………. [(1) + (2)]

2 H2O(l) ——>  2 H2(g) +  O2(g) …………………….. [(1) + (2)]

Dengan demikian, baik ion Namaupun SO42-, tidak bereaksi. Yang terjadi justru adalah peristiwa elektrolisis air menjadi unsur-unsur pembentuknya. Hal yang serupa juga ditemukan pada proses elektrolisis larutan Mg(NO3)dan K2SO4.

Bagaimana halnya jika elektrolisis lelehan maupun larutan menggunakan elektroda yang tidak inert, seperti Ni, Fe, dan Zn? Ternyata, elektroda yang tidak inert hanya dapat bereaksi di anoda, sehingga produk yang dihasilkan di anoda adalah ion elektroda yang larut (sebab logam yang tidak inert mudah teroksidasi). Sementara, jenis elektroda tidak mempengaruhi produk yang dihasilkan di katoda. Sebagai contoh, berikut adalah proses elektrolisis larutan garam NaCl dengan menggunakan elektroda Cu :

Katoda (-)            :   2 H2O(l) +  2 e- ——>  H2(g) +  2 OH-(aq) ……………………..  (1)

Anoda (+)            :   Cu(s) ——>  Cu2+(aq) +  2 e……………………..  (2)

Reaksi sel            :   Cu(s) +  2 H2O(l) ——>  Cu2+(aq) +  H2(g) +  2 OH-(aq)……………………..  [(1) + (2)]

Dari pembahasan di atas, kita dapat menarik beberapa kesimpulan yang berkaitan dengan reaksi elektrolisis :

  1. Baik elektrolisis lelehan maupun larutan, elektroda inert tidak akan bereaksi; elektroda tidak inert hanya dapat bereaksi di anoda

  2. Pada elektrolisis lelehan, kation pasti bereaksi di katoda dan anion pasti bereaksi di anoda

  3. Pada elektrolisis larutan, bila larutan mengandung ion alkali, alkali tanah, ion aluminium, maupun ion mangan (II), maka air yang mengalami reduksi di katoda

  4. Pada elektrolisis larutan, bila larutan mengandung ion sulfat, nitrat, dan ion sisa asam oksi, maka air yang mengalami oksidasi di anoda

Salah satu aplikasi sel elektrolisis adalah pada proses yang disebut penyepuhan. Dalam proses penyepuhan, logam yang lebih mahal dilapiskan (diendapkan sebagai lapisan tipis) pada permukaan logam yang lebih murah dengan cara elektrolisis. Baterai umumnya digunakan sebagai sumber listrik selama proses penyepuhan berlangsung. Logam yang ingin disepuh berfungsi sebagai katoda dan lempeng perak (logam pelapis) yang merupakan logam penyepuh berfungsi sebagai anoda. Larutan elektrolit yang digunakan harus mengandung spesi ion logam yang sama dengan logam penyepuh (dalam hal ini, ion perak). Pada proses elektrolisis, lempeng perak di anoda akan teroksidasi dan larut menjadi ion perak. Ion perak tersebut kemudian akan diendapkan sebagai lapisan tipis pada permukaan katoda. Metode ini relatif mudah dan tanpa biaya yang mahal, sehingga banyak digunakan pada industri perabot rumah tangga dan peralatan dapur.

Setelah kita mempelajari aspek kualitatif reaksi elektrolisis, kini kita akan melanjutkan dengan aspek kuantitatif sel elektrolisis. Seperti yang telah disebutkan di awal, tujuan utama elektrolisis adalah untuk mengendapkan logam dan mengumpulkan gas dari larutan yang dielektrolisis. Kita dapat menentukan kuantitas produk yang terbentuk melalui konsep mol dan stoikiometri.

Satuan yang sering ditemukan dalam aspek kuantitatif sel elektrolisis adalah Faraday (F). Faraday didefinisikan sebagai muatan (dalam Coulomb) mol elektron. Satu Faraday equivalen dengan satu mol elektron. Demikian halnya, setengah Faraday equivalen dengan setengah mol elektron. Sebagaimana yang telah kita ketahui, setiap satu mol partikel mengandung 6,02 x 1023partikel. Sementara setiap elektron mengemban muatan sebesar  1,6 x 10-19 C. Dengan demikian :

1 Faraday  =  1 mol elektron  =  6,02 x 1023 partikel elektron x 1,6 x 10-19 C/partikel elektron 1 Faraday  =  96320 C (sering dibulatkan menjadi 96500 C untuk mempermudah perhitungan)

Hubungan antara Faraday dan Coulomb dapat dinyatakan dalam persamaan berikut :

Faraday  =  Coulomb / 96500

Coulomb  =  Faraday x 96500

Coulomb adalah satuan muatan listrik. Coulomb dapat diperoleh melalui perkalian arus listrik (Ampere) dengan waktu (detik). Persamaan yang menunjukkan hubungan Coulomb, Ampere, dan detik adalah sebagai berikut :

Coulomb  =  Ampere  x  Detik

Q  =  I  x  t

Dengan demikian, hubungan antara Faraday, Ampere, dan detik adalah sebagai berikut :

Faraday  =  (Ampere  x  Detik)  /  96500

Faraday  =  (I  x  t)  /  96500

0 komentar:

Poskan Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More