Cute Onion Club - Onion Head

Connect with Us

Jumat, 30 Agustus 2013

JENIS DETEKTOR


Jenis Detektor Radiasi
Detektor merupakan suatu bahan yang peka terhadap radiasi, yang bila dikenai radiasi akan menghasilkan tanggapan mengikuti mekanisme yang telah dibahas sebelumnya. Perlu diperhatikan bahwa suatu bahan yang sensitif terhadap suatu jenis radiasi belum tentu sensitif terhadap jenis radiasi yang lain. Sebagai contoh, detektor radiasi gamma belum tentu dapat mendeteksi radiasi neutron.
Sebenarnya terdapat banyak jenis detektor, tetapi di sini hanya akan dibahas tiga jenis detektor yaitu, detektor isian gas, detektor sintilasi, dan detektor semikonduktor.

  Detektor Isian Gas
Detektor isian gas merupakan detektor yang paling sering digunakan untuk mengukur radiasi. Detektor ini terdiri dari dua elektroda, positif dan negatif, serta berisi gas di antara kedua elektrodanya. Elektroda positif disebut sebagai anoda, yang dihubungkan ke kutub listrik positif, sedangkan elektroda negatif disebut sebagai katoda, yang dihubungkan ke kutub negatif. Kebanyakan detektor ini berbentuk silinder dengan sumbu yang berfungsi sebagai anoda dan dinding silindernya sebagai katoda sebagaimana berikut.
Radiasi yang memasuki detektor akan mengionisasi gas dan menghasilkan ion-ion positif dan ion-ion negatif (elektron). Jumlah ion yang akan dihasilkan tersebut sebanding dengan energi radiasi dan  berbanding terbalik dengan daya ionisasi gas. Daya ionisasi gas berkisar dari 25 eV s.d. 40 eV. Ion-ion yang dihasilkan di dalam detektor tersebut akan memberikan kontribusi terbentuknya pulsa listrik ataupun arus listrik.
Ion-ion primer yang dihasilkan oleh radiasi akan bergerak menuju elektroda yang sesuai. Pergerakan ion-ion tersebut akan menimbulkan pulsa atau arus listrik. Pergerakan ion tersebut di atas dapat berlangsung bila di antara dua elektroda terdapat cukup medan listrik. Bila medan listriknya semakin tinggi maka energi kinetik ion-ion tersebut akan semakin besar sehingga mampu untuk mengadakan ionisasi lain.
Ion-ion yang dihasilkan oleh ion primer disebut sebagai ion sekunder. Bila medan listrik di antara dua elektroda semakin tinggi maka jumlah ion yang dihasilkan oleh sebuah radiasi akan sangat banyak dan disebut proses ‘avalanche’.
Terdapat tiga jenis detektor isian gas yang bekerja pada daerah yang berbeda yaitu detektor kamar ionisasi, detektor proporsional, dan detektor Geiger Mueller (GM).

  Detektor Kamar Ionisasi (ionization chamber)
Sebagaimana terlihat pada kurva karakteristik gas di atas, jumlah ion yang dihasilkan di daerah ini relatif sedikit sehingga tinggi pulsanya, bila menerapkan pengukuran model pulsa, sangat rendah. Oleh karena itu, biasanya, pengukuran yang menggunakan detektor ionisasi menerapkan cara arus. Bila akan menggunakan detektor ini dengan cara pulsa maka dibutuhkan penguat pulsa yang sangat baik. Keuntungan detektor ini adalah dapat membedakan energi yang memasukinya dan tegangan kerja yang dibutuhkan tidak terlalu tinggi. 

  Detektor Proporsional
Dibandingkan dengan daerah ionisasi di atas, jumlah ion yang dihasilkan di daerah proporsional ini lebih banyak sehingga tinggi pulsanya akan lebih tinggi. Detektor ini lebih sering digunakan untuk pengukuran dengan cara pulsa.
Terlihat pada kurva karakteristik di atas bahwa jumlah ion  yang dihasilkan sebanding dengan energi radiasi, sehingga detektor ini dapat membedakan energi radiasi. Akan tetapi, yang merupakan suatu kerugian, jumlah ion atau tinggi pulsa yang dihasilkan sangat dipengaruhi oleh tegangan kerja dan daya tegangan untuk detektor ini harus sangat stabil. 

  Detektor Geiger Mueller (GM)
Jumlah ion yang dihasilkan di daerah ini sangat banyak, mencapai nilai saturasinya, sehingga pulsanya relatif tinggi dan tidak memerlukan penguat pulsa lagi. Kerugian utama dari detektor ini ialah tidak dapat membedakan energi radiasi yang memasukinya, karena berapapun energinya jumlah ion yang dihasilkannya sama dengan nilai saturasinya. Detektor ini merupakan detektor yang paling sering digunakan, karena dari segi elektonik sangat sederhana, tidak perlu menggunakan rangkaian penguat. Sebagian besar peralatan ukur proteksi radiasi, yang harus bersifat portabel, terbuat dari detektor Geiger Mueller.

  Detektor Sintilasi
Detektor sintilasi selalu terdiri dari dua bagian yaitu bahan sintilator dan photomultiplier. Bahan sintilator merupakan suatu bahan  padat, cair maupun gas, yang akan menghasilkan percikan cahaya bila dikenai radiasi pengion. Photomultiplier digunakan untuk mengubah percikan cahaya yang dihasilkan bahan sintilator menjadi pulsa listrik. Mekanisme pendeteksian radiasi pada detektor sintilasi dapat dibagi menjadi dua tahap yaitu :
    proses pengubahan radiasi yang mengenai detektor menjadi percikan cahaya di dalam bahan sintilator dan
    proses pengubahan percikan cahaya menjadi pulsa listrik di dalam tabung photomultiplier
       Bahan Sintilator
Proses sintilasi pada bahan ini dapat dijelaskan dengan Gambar 4. Di dalam kristal bahan sintilator terdapat pita-pita atau daerah yang dinamakan sebagai pita valensi dan pita konduksi yang dipisahkan dengan tingkat energi tertentu. Pada keadaan dasar, ground state, seluruh elektron berada di pita valensi sedangkan di pita konduksi kosong. Ketika terdapat radiasi yang memasuki kristal, terdapat kemungkinan bahwa energinya akan terserap oleh beberapa elektron di pita valensi, sehingga dapat meloncat ke pita konduksi. Beberapa saat kemudian elektron-elektron tersebut akan kembali ke pita valensi melalui pita energi bahan aktivator sambil memancarkan percikan cahaya.
Jumlah percikan cahaya sebanding dengan energi radiasi diserap dan dipengaruhi oleh jenis bahan sintilatornya. Semakin besar energinya semakin banyak percikan cahayanya. Percikan-percikan cahaya ini kemudian ‘ditangkap’ oleh photomultiplier.
 Berikut ini adalah beberapa contoh bahan sintilator yang sering digunakan sebagai detektor radiasi.
-. Kristal NaI(Tl)
-. Kristal ZnS(Ag)
-. Kristal LiI(Eu)
-. Sintilator Organik
       Sintilator Cair (Liquid Scintillation)
Detektor ini sangat spesial dibandingkan dengan jenis detektor yang lain karena berwujud cair. Sampel radioaktif yang akan diukur dilarutkan dahulu ke dalam sintilator cair ini sehingga sampel dan detektor menjadi satu kesatuan larutan yang homogen. Secara geometri pengukuran ini dapat mencapai efisiensi 100 % karena semua radiasi yang dipancarkan sumber akan “ditangkap” oleh detektor. Metode ini sangat diperlukan untuk mengukur sampel yang memancar­kan radiasi b berenergi rendah seperti tritium dan C14.
Masalah yang harus diperhatikan pada metode ini adalah quenching yaitu berkurangnya sifat transparan dari larutan (sintilator cair) karena mendapat campuran sampel. Semakin pekat konsentrasi sampel maka akan semakin buruk tingkat transparansinya sehingga percikan cahaya yang dihasilkan tidak dapat mencapai photomultiplier
  Tabung Photomultiplier
Sebagaimana telah dibahas sebelumnya, setiap detektor sintilasi terdiri atas dua bagian yaitu bahan sintilator dan tabung photomultiplier. Bila bahan sintilator berfungsi untuk mengubah energi radiasi menjadi percikan cahaya maka tabung photomultiplier ini berfungsi untuk mengubah percikan cahaya tersebut menjadi berkas elektron, sehingga dapat diolah lebih lanjut sebagai pulsa / arus listrik.
Tabung photomultiplier terbuat dari tabung hampa yang kedap cahaya dengan photokatoda yang berfungsi sebagai masukan pada salah satu ujungnya dan terdapat beberapa dinode untuk menggandakan elektron seperti terdapat pada gambar 5. Photokatoda yang ditempelkan pada bahan sintilator, akan memancarkan elektron bila dikenai cahaya dengan panjang gelombang yang sesuai. Elektron yang dihasilkannya akan diarahkan, dengan perbedaan potensial, menuju dinode pertama. Dinode tersebut akan memancarkan beberapa elektron sekunder bila dikenai oleh elektron.
Elektron-elektron sekunder yang dihasilkan dinode pertama akan menuju dinode kedua dan dilipatgandakan kemudian ke dinode ketiga dan seterusnya sehingga elektron yang terkumpul pada dinode terakhir berjumlah sangat banyak. Dengan sebuah kapasitor kumpulan elektron tersebut akan diubah menjadi pulsa listrik.

  Detektor Semikonduktor
Bahan semikonduktor, yang diketemukan relatif lebih baru daripada dua jenis detektor di atas, terbuat dari unsur golongan IV pada tabel periodik yaitu silikon atau germanium. Detektor ini mempunyai beberapa keunggulan yaitu lebih effisien dibandingkan dengan detektor isian gas, karena terbuat dari zat padat, serta mempunyai resolusi yang lebih baik daripada detektor sintilasi.
Pada dasarnya, bahan isolator dan bahan semikonduktor tidak dapat meneruskan arus listrik. Hal ini disebabkan semua elektronnya  berada di pita valensi sedangkan di pita konduksi kosong. Perbedaan tingkat energi antara pita valensi dan pita konduksi di bahan isolator sangat besar sehingga tidak memungkinkan elektron untuk berpindah ke pita konduksi ( > 5 eV ) seperti terlihat di atas. Sebaliknya, perbedaan tersebut relatif kecil pada bahan semikonduktor ( < 3 eV ) sehingga memungkinkan elektron untuk meloncat ke pita konduksi bila mendapat tambahan energi.
Energi radiasi yang memasuki bahan semikonduktor akan diserap oleh bahan sehingga beberapa elektronnya dapat berpindah dari pita valensi ke pita konduksi. Bila di antara kedua ujung bahan semikonduktor tersebut terdapat beda potensial maka akan terjadi aliran arus listrik. Jadi pada detektor ini, energi radiasi diubah menjadi energi listrik.

0 komentar:

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More